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Slender-body theory is used to investigate the steady-state deformation and time-
dependent evolution of an inviscid axisymmetric bubble in zero-Reynolds-number
extensional flow, when insoluble surfactant is present on the bubble surface. The
asymptotic solutions reveal steady ellipsoidal bubbles covered with surfactant, and, at
increasing deformation, solutions distinguished by a cylindrical surfactant-free central
part, with stagnant surfactant caps at the bubble endpoints. The bubble shapes are
rounded near the endpoints, in contrast to the pointed shapes found for clean inviscid
bubbles. Simple expressions are derived relating the capillary number Q to the steady
bubble slenderness ratio ε. These show that there is a critical value Qc above which
steady solutions no longer exist. Equations governing the time-evolution of a slender
inviscid bubble with surfactant, valid for large capillary number, are also derived.
Numerical solutions of the slender bubble equations for Q > Qc exhibit spindle shapes
with tip-streaming filaments.

1. Introduction
The deformation and breakup of a drop or bubble in an imposed extensional flow at

low Reynolds number is a fundamental process in fluid mechanics, with applications
to the formation, stability and rheology of emulsions. The systematic study of drop
deformation and breakup was initiated by Taylor (1934), who used a four-roller mill
to subject single drops suspended in a highly viscous fluid to shearing and straining
flows. Taylor’s experiments revealed the existence of steady rounded and pointed
drops, as well as bursting drops of each type, depending on the ratio λ= µi/µ of
drop to suspending liquid viscosity and the capillary number Q =µGa/σ , where G

is the imposed strain rate, σ is the surface tension, and a is a length scale equal
to the radius of a spherical drop with the same volume. Subsequent experiments by
Rumscheidt & Mason (1961), Torza, Cox & Mason (1972), Grace (1982) and Bentley
& Leal (1986) have confirmed and extended Taylor’s results. In many of these early
studies, the word ‘bursting’ refers to the non-existence of a steady drop shape when
the applied shear or strain exceeds a critical value, rather than the actual breakup
of the drop. Reviews by Acrivos (1983) and Rallison (1984) summarize some of the
early experiments, while Stone (1994) describes more recent developments.

Much work has focused on drop deformation for clean fluid systems in which
interfacial tension gradients are absent. For these ‘clean’ drops, experiments,
asymptotic analysis, and numerical simulations have revealed a relatively complete
picture of the deformation and breakup, for which there is good agreement between
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theory and experiment. Many of the theoretical developments have exploited the
slenderness of the deformed drop profile. For example, Buckmaster (1972) presented
a mathematically detailed treatment of an inviscid bubble in zero-Reynolds-number
axisymmetric straining flow by employing slender-body theory to compute the
leading-order solution in the slenderness ratio ε = b/l, where b is the height and
l the half-length of the bubble. Buckmaster’s analysis showed that steady pointed
bubble solutions exist for arbitrarily large capillary number. Numerical calculations
of Youngren & Acrivos (1976) confirm this conclusion, at least over a finite range
of capillary number. Acrivos & Lo (1978) refined Buckmaster’s analysis and further
showed that the inviscid bubble solutions are stable. These results suggest that, in the
absence of inertia, an initially spherical inviscid drop in an extensional flow attains a
steady shape, regardless of the magnitude of the applied strain.

Buckmaster (1973) and Acrivos & Lo (1978) further extended the treatment based
on slender-body theory to the case when the viscosity ratio λ is not identically zero,
but is chosen according to the scaling λ=O(ε2). They find that the bubble still
deforms into a steady slender shape provided that the strain rate (or equivalently the
capillary number) is below a critical value given by Qc = Gcµa/σ ≈ 0.148λ−1/6 (this
criterion was also found by Taylor 1964). For strain rates in excess of this value,
steady drop solutions no longer exist, and a time-dependent drop bursts. This result
is in close agreement with the experiments of Grace (1982), who found that relatively
large strain rates were required for drop breakup when λ� 1, with the critical value
Qc = Gcµa/σ being proportional to λ−0.16. A similar scenario is found for the bursting
of a slender inviscid drop in a non-zero-Reynolds-number flow. Thus, the phenomenon
of breakup is associated with the non-existence of a steady solution when the relevant
non-dimensional group (i.e. Q = Gµa/σ ) lies beyond a critical value, rather than
the instability of an existing steady state when the control parameter exceeds a
critical value. Extensions of slender-body theory to time-dependent drop evolution
can be found in Hinch (1980) and Sherwood (1984). A study of time-dependent drop
evolution in the near-sphere limit is given by Barthes-Biesel Acrivos (1973).

The present paper is concerned with the application of slender-body theory to
inviscid bubbles (i.e. λ=0) in extensional flow, in the case when insoluble surfactant
is present on the drop interface. Variations in interfacial surface tension that are
introduced by surfactant often have dramatic effects in free-surface flows. An example
is the phenomenon of tip-streaming, first observed by Taylor (1934), but only recently
associated with the presence of surfactant. Tip-streaming is a mode of breakup in
an extensional flow where a deformed drop (often featuring cusplike ends) emits thin
threads or small daughter droplets into the exterior fluid (de Bruijn 1993; Janssen,
Boon & Agterof 1994, 1997). The strain rate required for this type of breakup is
typically much less than that required for the usual mode of breakup for a clean
surface, or fracture, in which a drop ruptures into two or three pieces of similar size,
with a few tiny satellite drops in between (de Bruijn 1993). The droplets produced in
tip-streaming are much smaller than their parent drops, typically with radii two orders
of magnitude less, and exhibit a greatly reduced surface tension. The experiments of
de Bruijn (1993) and Janssen et al. (1994, 1997) provide strong evidence that interfacial
tension gradients due to the presence of surfactant play a critical role in tip-streaming.
As further evidence of this, numerical simulations (Eggleton, Tsai & Stebe 2001) using
a boundary-integral method show transient drop shapes with pointed tips, from which
thin threads are emitted, evoking the tip-streaming observed in experiments. Other
numerical studies on the influence of surfactant in drop deformation and breakup
include Stone & Leal (1990) and Milliken, Stone & Leal (1993).
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Figure 1. Illustration of a stagnant-cap bubble. The stagnant surfactant-caps are denoted
by dark curves.

Unlike the surfactant-free or ‘clean’ flow problem, there has been no theoretical
analysis on slender inviscid drops with surfactant in an extensional flow. The aim
of this paper is to fill the gap in theory by providing a detailed mathematical
analysis, based on slender-body theory, as an adjunct to experiments and numerical
simulations for finite capillary number Q. The analysis reveals some interesting
mathematical and physical features. For bubbles with sufficiently large deformation,
the steady solutions are distinguished by a cylindrical surfactant-free central part,
with localized ‘surfactant caps’ in the neighbourhood of the bubble endpoints (see
figure 1). When surface diffusion of surfactant is negligible compared to surface
transport, a steady surface with surfactant is stagnant, i.e. a no-slip condition is
satisfied there. Stagnant-cap bubbles have been investigated for a steadily translating
spherical drop in an otherwise quiescent fluid (Sadhal & Johnson 1983) and in exact
solutions for two-dimensional strained bubbles (Siegel 1999). The boundary-value
problem associated with a stagnant-cap bubble in Stokes flow is characterized by
mixed boundary conditions at the bubble surface, and free boundary curves that
define the edges of the cap. The location of these curves must be determined as part
of the solution. Common features in the asymptotic analysis of such codimension-two
free-boundary problems are discussed in Howison, Morgan & Ockendon (1997).

Our asymptotic analysis yields simple expressions for steady bubble solution
branches for both surfactant-covered bubbles (equation (3.37)) and stagnant-cap
bubbles (equation (3.70)), in the inviscid limit. It also reveals the existence and
magnitude of a critical capillary number Qc, above which steady slender solutions
no longer exist. In this respect, the effect of surfactant is analogous to that of finite
interior drop viscosity or exterior fluid inertia. However, our results suggest that for
sufficiently small values of the viscosity ratio λ, surfactant dominates over interior
drop visicosity as a mechanism for bursting.

Equations governing the time-evolution of a slender inviscid bubble in an
axisymmetric straining flow are also presented, in the case for which insoluble
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surfactant acts on the bubble surface. The equations are valid for large capillary
number, in a sense which is quantified in § 5. Numerical simulations of these equations
show unsteady solutions that exhibit transient pointed shapes with tip-streaming
threads, like those observed in experiments (see e.g. de Bruijn 1993; Eggers 1997).

The rest of the paper is organized as follows. The governing equations are
presented in § 2. Slender-body theory for steady-state inviscid bubbles with surfactant
is developed in § 3. The case of a bubble that is completely covered in surfactant is first
considered in § 3.1, where an asymptotic solution is developed in integer powers of
ln(1/ε), as occurs for a solid slender body in an extensional Stokes flow (Tillet 1970).
However, unlike flow around a solid of arbitrary shape, a simple solution is found
that is valid to all integer powers in ln(1/ε). The case of partially covered, or stagnant-
cap, bubbles is treated in § 3.2, and the steady response curves are characterized in
§ 3.3. The slender-bubble solutions found in § 3 have a non-uniformity at the bubble
endpoints, and this is remedied in § 4, where a local analysis verifies that the endpoints
are rounded. The time-dependent evolution equations and unsteady solutions are
presented in § 5, and concluding remarks are presented in § 6. An Appendix presents
some details of the slender-body analysis.

2. Governing equations
The governing equations for Stokes flow of a fluid with constant viscosity µ are

∇ · u = 0, ∇p = µ∇2u, (2.1)

where u is the fluid velocity and p is the pressure. The boundary condition at infinity
is that the flow approaches a state of uniaxial extension with imposed strain rate G

and a constant pressure which is taken to be zero,

u → G
(

− 1
2
rer + zez

)
, p → 0 as |x| → ∞. (2.2)

We look for axisymmetric solutions in a cylindrical polar coordinate system r, θ, z,
in which the bubble surface is

S : r = R(z) with R(0) = b, R(l) = 0. (2.3)

The outward normal n oriented from the bubble surface to the surrounding fluid and
a unit tangent vector t in a plane of axisymmetry θ = constant are

n =
(1, 0, −R′)

(1 + R′2)1/2
, t =

(R′, 0, 1)

(1 + R′2)1/2
. (2.4)

When a surfactant adsorbs onto the bubble surface to create a surface concentration
Γ , the surface tension reduces from its surfactant-free or clean value σ0. The simplest
model for the dependence of interfacial surface tension σ on surfactant concentration
Γ is given by the linear relation (see e.g. Stone & Leal 1990)

σ = σ0 − (RT )Γ, (2.5)

where σ0 is the surface tension in the absence of surfactant, R and T are the
surfactant’s gas constant (i.e. universal gas constant divided by molecular weight) and
the uniform temperature. More precise models incorporate a nonlinear dependence
of σ on Γ with the fact that there is an upper bound to the surfactant concentration,
denoted by Γ∞. An equation of state which accounts for these effects is

σ = σ0 + (RT Γ∞) ln

(
1 − Γ

Γ∞

)
. (2.6)
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Since it leads to simpler formulae, the theory developed in this paper will be presented
with the linear equation of state, although it is a simple matter to substitute a nonlinear
model. An illustrative result using the nonlinear equation is presented in § 3.2.

Axisymmetry implies that σ and Γ are functions of z alone. In the steady state, a
balance of stress τ at the interface requires that

[τ ]+− = σ (κθ + κz)n − ∇sσ, (2.7)

where [·]+− denotes change across S, κθ and κz are the principal normal curvatures of
S, and ∇s is the surface gradient operator ∇s = ∇ − n(n · ∇). Since the stress vector
for a Newtonian fluid is τ = −pn + 2µe · n, where e is the rate of strain tensor,
and the fluid in the bubble interior is completely inviscid, the tangential and normal
components of (2.7) are

2µ

(1 + R′2)

(
R′ ∂ur

∂r
+ (1 − R′2) 1

2

(
∂ur

∂z
+

∂uz

∂r

)
− R′ ∂uz

∂z

)
=

−σ ′

(1 + R′2)1/2
, (2.8)

pi − pe +
2µ

(1 + R′2)

(
∂ur

∂r
− R′

(
∂ur

∂z
+

∂uz

∂r

)
+ R′2 ∂uz

∂z

)
=

σ

R(1 + R′2)1/2

(
1 − RR′′

(1 + R′2)

)
,

(2.9)

where pi and pe are the pressure interior and exterior to the bubble surface,
respectively.

The kinematic boundary condition holds on S. We assume that the ratio of surface
diffusion to surface advection of surfactant is sufficiently small that surface diffusion
can be neglected. This is the limit of an immobile surfactant, and, on regions of S

that are surfactant-covered, the velocity field satisfies the no-slip boundary condition.
In the steady state, this implies that, in terms of the velocity components,

on S :

{
ur = 0 and uz = 0 when Γ > 0,

ur − R′uz = 0 when Γ = 0.
(2.10)

Two additional constraints are that the bubble volume and the total amount of
surfactant on S are the same in both the strained and unstrained states, so that

4

3
πa3

0 = 2π

∫ l

0

R2(z) dz (2.11)

and

4πa2
0Γ0 = 4π

∫ l

0

Γ (z)R(z)(1 + R′2)1/2 dz. (2.12)

Here, a0 and Γ0 are the bubble radius and uniform surfactant concentration in the
unstrained spherical state, and l is the bubble half-length in the z-direction in the
strained state as defined at (2.3).

The governing equations and boundary conditions are made non-dimensional by
setting

x = l x̃, R(z) = bR̃(z̃), u = Glũ, p = Gµp̃, σ = σ0σ̃ , Γ = Γ0Γ̃ , (2.13)

where a tilde denotes that a quantity is dimensionless. Thus, lengths are made
dimensionless by the bubble’s half-length l, except for the radial distance to the free
surface which is made dimensionless by the radial distance b at z = 0. Dimensionless
groupings are defined by

ε =
b

l
, ν =

a0

l
, β =

RT Γ0

σ0

, Q =
Gµa0

σ0

. (2.14)
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When tildes on dimensionless quantities are dropped, the bubble surface is

S : r = εR(z) with R(0) = 1, R(1) = 0. (2.15)

The governing equations and the condition at infinity are given by setting µ and G to
one in their dimensional counterparts (2.1) and (2.2), and the linear relation between
surfactant concentration and surface tension becomes

σ = 1 − βΓ. (2.16)

The stress-balance boundary conditions on S become

2

(1 + ε2R′2)

(
εR′ ∂ur

∂r
+ (1 − ε2R′2) 1

2

(
∂ur

∂z
+

∂uz

∂r

)
− εR′ ∂uz

∂z

)
=

−ν

Q

σ ′

(1 + ε2R′2)1/2
,

(2.17)

pi − pe +
2

(1 + ε2R′2)

(
∂ur

∂r
− εR′

(
∂ur

∂z
+

∂uz

∂r

)
+ ε2R′2 ∂uz

∂z

)

=
ν

Qε

σ

R(1 + ε2R′2)1/2

(
1 − ε2RR′′

(1 + ε2R′2)

)
, (2.18)

and the no-slip and kinematic boundary conditions become

on S :

{
ur = 0 and uz = 0 when Γ > 0,

ur − εR′uz = 0 when Γ = 0.
(2.19)

The constraints on bubble volume and total surfactant are now

2ν3

3ε2
=

∫ 1

0

R2 dz (2.20)

and

ν2

ε
=

∫ 1

0

Γ R(1 + ε2R′2)1/2 dz. (2.21)

3. Steady-state solutions
The bubble causes a modification of the flow from the imposed state of uniaxial

extension, which is given by introducing point forces or Stokeslets, with distribution
f ez, and point mass sources, with distribution g, situated along the bubble axis
r = 0, z ∈ [−1 + δ, 1 − δ]. In terms of these distributions,

ur = − 1
2
r + r(I1,3(f ) + I0,3(g)), (3.1)

uz = z + I0,1(f ) + I2,3(f ) + I1,3(g), (3.2)

pe = 2I1,3(f ), (3.3)

where Im,n(φ) =

∫ 1−δ

−1+δ

φ(ξ )
(z − ξ )m

(r2 + (z − ξ )2)n/2
dξ. (3.4)

The problem is now reduced to finding the free-surface position S : r = εR(z), the
Stokeslet and mass source distributions f and g, and the surfactant concentration
Γ or equivalently, from (2.16), the surface tension σ . On surfactant-covered parts of
S, Γ > 0 and the two no-slip boundary conditions and two stress-balance conditions
provide four equations for these four unknowns. On surfactant-free parts of S,
Γ =0 and the two no-slip boundary conditions are replaced by the one kinematic
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boundary condition, which together with the two stress-balance conditions provides
three equations for the unknowns R, f and g.

The components of the velocity gradient are given by differentiating equations (3.1)
and (3.2), and are

∂ur

∂r
= − 1

2
+ I1,3(f ) − 3r2I1,5(f ) + I0,3(g) − 3r2I0,5(g), (3.5)

∂ur

∂z
= r(I0,3(f ) − 3I2,5(f ) − 3I1,5(g)), (3.6)

∂uz

∂r
= −r(I0,3(f ) + 3I2,5(f ) + 3I1,5(g)), (3.7)

∂uz

∂z
= 1 + I1,3(f ) − 3I3,5(f ) + I0,3(g) − 3I2,5(g). (3.8)

3.1. The completely covered case

The exact form of the no-slip boundary condition uz = 0 on r = εR is

z + I0,1(f ) + I2,3(f ) + I1,3(g) = 0. (3.9)

The expansion of the integrals Im,n(·) as r → 0 is outlined in the Appendix, from which
we find that when the dominant part of each expansion is included, the boundary
condition is approximated by

z + 2

{
f

(
2 ln

1

ε
+ ln

4(1 − z2)

R2
− 1

)
+

∫ 1−δ

−1+δ

f (ξ ) − f (z)

|z − ξ | dξ + · · ·
}

− g′
{

2 ln
1

ε
+ · · ·

}
= 0. (3.10)

Throughout, an ellipsis denotes terms that are smaller by an algebraic power of ε

than the last term that precedes it. After scalings for f and g are found, the term
I1,3(g) in g will be seen not to contribute to equation (3.10) to the order of calculation
given here, which allows computation of the dominant part of the expansions for
each unknown up to all integer powers of ln(1/ε).

The no-slip boundary condition ur =0 on r = εR is

− 1
2

+ I1,3(f ) + I0,3(g) = 0, (3.11)

which, on expansion of the integrals I1,3(f ) and I0,3(g) following the same procedure
as above, is approximated by

− 1
2

+ f

{
1

1 − z
− 1

1 + z
+ · · ·

}
− f ′

{
2 ln

1

ε
+ ln

4(1 − z2)

R2
− 2 + · · ·

}

+

∫ 1−δ

−1+δ

z − ξ

|z − ξ |3 (f (ξ ) − f (z) − (ξ − z)f ′(z)) dξ + · · · + g

{
2

ε2R2
+ · · ·

}
= 0. (3.12)

Adding the derivative with respect to z of equation (3.10) to twice equation (3.12),
we see that g = O(ε2f ). Equation (3.10) then implies that f = O(ln−1(1/ε)) and that
the term I1,3(g) = O(ε2), which is of higher order and can be neglected. Also, at higher
orders, the dominant part of the expansions for f , g and R recur at integer powers
of ln(1/ε). We therefore introduce order one quantities f̃ , g̃, fn, gn and Rn such that

f =
f̃

ln(1/ε)
where f̃ = f0 +

f1

ln(1/ε)
+ · · · +

fn

lnn(1/ε)
+ · · · , (3.13)
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g =
ε2g̃

ln(1/ε)
where g̃ = g0 +

g1

ln(1/ε)
+ · · · +

gn

lnn(1/ε)
+ · · · , (3.14)

R = R0 +
R1

ln(1/ε)
+ · · · +

Rn

lnn(1/ε)
+ · · · . (3.15)

With the term I1,3(g) shown to be of sufficiently high order that it can be omitted,
equation (3.10) determines the expansion of f to all integer powers of ln(1/ε), and
its leading term is such that

f0 = −1

4
z. (3.16)

The combination of the derivative of equation (3.10) with equation (3.12) that was
formed earlier can be simplified, so that (3.12) can be replaced with

g =
ε2

2

d

dz
(R2f ), (3.17)

which holds to all integer powers of ln(1/ε).
In the tangential stress-balance equation (2.17), we estimate each term in the velocity

gradient from (3.5) to (3.8) using the above scalings for f and g and the expansion
of the integrals Im,n(·) described in the Appendix. This shows first that (2.17) can be
approximated by

∂ur

∂z
+

∂uz

∂r
=

−ν

Q

dσ

dz
, (3.18)

where the velocity gradient terms sum to −6εR(I2,5(f )+ I1,5(g)). Of these, the integral
I1,5(g) is of higher order and can be neglected, and the approximation of the integral
I2,5(f ) is such that the tangential stress balance simplifies to

4f

εR
=

ν

Q

dσ

dz
, (3.19)

which holds to all integer powers of ln(1/ε). Since σ and its derivative are both of
order one, the scaling (3.13) for f shows that ν/Q =O(1/ε ln(1/ε)).

We now estimate terms in the normal stress-balance equation (2.18). The exterior
pressure pe = 2I1,3(f ) from equation (3.3), so that the expansion of I1,3(f ) and scaling
of f imply that pe is of order one. Each term in the velocity gradient is found from
(3.5) to (3.8) to be at most of order O(1/ ln(1/ε)). The surface tension term on the
right-hand side of (2.18) is known from the estimate of ν/Q above to be of order
O(1/ε2 ln(1/ε)); it is therefore dominant and is balanced by the internal pressure pi .
The normal stress-balance equation therefore simplifies to

pi =
ν

Qε

σ

R
, (3.20)

which holds to all integer powers of ln(1/ε).
Based on these estimates of the stress balance at the drop surface, we introduce

order-one quantities p̃i, pin, σn and Λ defined by

pi =
p̃i

ε2 ln(1/ε)
where p̃i = pi0 +

pi1

ln(1/ε)
+ · · · +

pin

lnn(1/ε)
+ · · · , (3.21)

σ = σ0 +
σ1

ln(1/ε)
+ · · · +

σn

lnn(1/ε)
+ · · · , (3.22)

ν

Q
=

1

ε ln(1/ε)Λ
. (3.23)
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The parameter Λ is a scaled capillary number. Written in terms of these order-one
quantities, the two stress-balance equations are

dσ

dz
=

4Λf̃

R
, σ = Λp̃iR, (3.24a, b)

and hold to all integer powers of ln(1/ε).
Since the fluid inside the bubble is inviscid and at rest, the interior pressure pi is

constant, i.e. independent of z, from which (3.24b) shows that the surface tension σ

and the bubble radius R are equal up to a multiplicative constant. However, from the
boundary condition (2.15), R = 0 at the bubble endpoint z =1, which implies that σ

is also zero there. Since the surface tension cannot truly vanish, we anticipate that
there is a non-uniformity in the expansions near the endpoints of the bubble, z = ±1.
We return to this in § 4.

On eliminating σ between (3.24a) and (3.24b), we find a single first-order differential
equation for R in terms of the scaled Stokeslet distribution and internal pressure, that
is

d

dz
R2 =

8f̃

p̃i

, (3.25)

which is subject to the two boundary conditions,

R(0) = 1, R(1) = 0, (3.26)

of (2.15), to all integer powers of ln(1/ε). At leading order, since f̃ = f0 = −z/4
from (3.16) and p̃i = pi0 from (3.21), equation (3.25) becomes (d/dz)R2

0 = −2z/pi0.
Integrating this with respect to z and applying the leading-order boundary conditions
R0(0) = 1 and R0(1) = 0, we find that

R0 = (1 − z2)1/2, pi0 = 1. (3.27)

At higher orders, the solution procedure is to find fn from equation (3.10) (with the
term in g omitted), and then to find Rn and pin by integrating equation (3.25) with
the boundary conditions (3.26). Expressions for gn and σn are then found from (3.17)
and (3.24b). Specifically, substituting the solution for R0 of (3.27) in equation (3.10),
we find that

2f1 + f0(2 ln 2 − 1) +

∫ 1

−1

f0(ξ ) − f0(z)

|z − ξ | dξ = 0, (3.28)

and, since f0 = −z/4,

f1 = − 1
4
αz where α = 3

2
− ln 2. (3.29)

Equation (3.25), together with the expansions (3.13), (3.15) and (3.21) and the solutions
for f, R, and pin at previous orders, becomes

d

dz
(R0R1) = (pi1 − α)z, (3.30)

so that on integrating with respect to z and applying the boundary conditions
R0(0) = R0(1) = 0 implied by (3.26), we find that

R1 = 0, pi1 = α. (3.31)
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It turns out that simple closed-form expressions for the solution can be found to
all integer powers of ln(1/ε), and that

fk = −1

4
αkz, Rk = 0, pik = αk for k � 1, (3.32)

as is shown by the following inductive argument. If (3.32) is valid for all integer k

with 1 � k � n − 1 for some n, then equation (3.10) implies that a relation between
fn−1 and fn holds that is given by putting f0 	→ fn−1 and f1 	→ fn in (3.28). Hence,
fn = −αnz/4. From (3.32), the first n terms of the expansion (3.21) for p̃i form a
geometric series, the sum of which gives

p̃i =
1 − (α/ln(1/ε))n

1 − α/ln(1/ε)
+

pin

lnn(1/ε)
+ O

(
ln−(n+1) 1/ε

)
,

hence
1

p̃i

= 1 − α

ln(1/ε)
− (pin − αn)

lnn(1/ε)
+ O

(
ln−(n+1) 1/ε

)
.

When this is combined with the assumption of (3.32) for the expansion of f , equation
(3.25) implies that

d

dz
(R0Rn) = (pin − αn)z, (3.33)

so that, on integrating with respect to z and applying the boundary conditions
Rn(0) = Rn(1) = 0, we find that

Rn = 0, pin = αn, (3.34)

and (3.32) is seen to hold. The expansion for σ follows from (3.24b) and the ex-
pansion for g follows from equation (3.17), which give σn = Λαn(1 − z2)1/2 and gn =
αn(3z2 − 1)/8.

Each of the above expansions is a geometric series, and when summed these give
the following solution to all integer powers of ln(1/ε):

f =
−αεz

4 ln(1/ε)
, g =

ε2αε(3z2 − 1)

8 ln(1/ε)
, R = (1 − z2)1/2,

σ = Λαε(1 − z2)1/2, pi =
αε

ε2 ln(1/ε)
, where αε =

1

1 − α/ln(1/ε)
.


 (3.35)

Once it is determined that the free surface r = εR(z) is ellipsoidal, since it is a no-slip
surface it is perhaps not surprising that the solution can be found to all orders
of ln(1/ε). This fact has previously been noted for a rigid slender ellipsoidal solid
by Tillet (1970), and is consistent with the exact solution of Jeffery (1922) for a
rigid ellipsoid of arbitrary aspect ratio. Here, we find the same ellipsoidal shape
occurs fortuitously for an inviscid bubble covered with a non-uniform distribution of
immobile surfactant (3.35).

The constraints for conservation of bubble volume and conservation of total
surfactant can be evaluated to the same level of approximation. From the solution
for R of (3.35), conservation of bubble volume (2.20) implies that ν and ε are related
by

ν = ε2/3. (3.36)

Conservation of total surfactant (2.21), together with (3.36) and the relation σ = 1−βΓ

of (2.16), simplifies to become
∫ 1

0
(1 − σ )R dz = βε1/3 to all integer powers of ln(1/ε).

From the solutions for R and σ of (3.35) together with expressions (3.23) and (3.36),
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which give the scaled capillary number Λ in terms of ε and Q, we find that the
capillary number Q is given in terms of the aspect ratio ε and the parameter β by

Q = 3
2
ε5/3 ln(1/ε)

(
1 − α

ln(1/ε)

)(
1
4
π − βε1/3

)
. (3.37)

With increasing deformation, that is with decreasing aspect ratio ε, the monotone
behaviour of the relation σ =1 − βΓ and of the solution (3.35) for σ in terms of z

show that the surfactant concentration Γ first reaches zero at z = 0, when Λαε = 1.
In terms of β and ε, this occurs when

βε1/3 = 1
4
π − 2

3
. (3.38)

With further increase of deformation, and thus smaller values of ε, a change in the
solution occurs that is marked by the development of a surfactant-free or clean,
central part of the bubble centred on z = 0, accompanied by stagnant surfactant-caps
in a neighbourhood of the bubble endpoints z = ±1.

3.2. The partly covered case

In this case, the surfactant concentration Γ is identically zero on a central part of
the bubble surface with z ∈ (−a, a), and is positive elsewhere. As a consequence, the
Stokeslet and mass source distributions f and g are denoted by

(f, g) =

{
(f −, g−), z ∈ (−a, a),

(f +, g+), z ∈ (−1 + δ, −a) ∪ (a, 1 − δ),
(3.39)

where f and g may be discontinuous at z = ± a. Other unknowns such as the bubble
surface are still denoted by the same variable names as in the completely covered
case for all z. It turns out that in this section we construct ‘outer’ solutions for f , g,
R and σ , in the sense that the expansions are sought in the limit where z is fixed as
ε → 0. In addition to a non-uniformity that can be expected, based on the analysis of
the completely covered case, to occur near the bubble endpoints, we find that there
is an additional non-uniformity of the outer expansions in a neighbourhood of z = a.
This neighbourhood is small in the limit ε → 0, and the ‘stick–slip’ problem that is
required to resolve the solution locally is not investigated here.

Since the solution is expected to be continuous with respect to the parameter a in
the limit a → 0, the scalings for f +, g+ and pi with respect to ε are taken to be the
same as the scalings for f , g and pi in the completely covered case, that is

f + =
f̃ +

ln(1/ε)
, g+ =

ε2g̃+

ln(1/ε)
, pi =

p̃i

ε2 ln(1/ε)
. (3.40)

The variables with tildes, together with R and σ , are of order one and have expansions
in integer powers of ln(1/ε), e.g.

f + =
f̃ +

ln(1/ε)
where f̃ + = f +

0 +
f +

1

ln(1/ε)
+ · · · +

f +
n

lnn(1/ε)
+ · · · , (3.41)

R = R0 +
R1

ln(1/ε)
+ · · · +

Rn

lnn(1/ε)
+ · · · . (3.42)

We begin by seeking scalings for f − and g− when z ∈ [0, a).

z ∈ [0, a).

As in the completely covered case, the dominant balance of terms in equation (2.18)
for continuity of normal stress is between the internal pressure pi and the surface
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tension, so that an equation analogous to (3.20) holds and is valid to all integer
powers of ln(1/ε). However, since Γ = 0 when z ∈ [0, a) the surface tension σ is
equal to unity. Next, since the scaling for pi is unchanged, the scaling for ν/Q is also
unchanged and is given by (3.23), namely ν/Q =1/(ε ln(1/ε)Λ). The normal stress
balance can therefore be expressed by (3.24b) with σ = 1, that is,

Λp̃iR = 1, (3.43)

which holds to all integer powers of ln(1/ε). Recalling that Λ and p̃i are independent
of z, it follows that R is also independent of z, so that from the boundary condition
R(0) = 1 of (2.15) we have

R = 1, hence Λp̃i = 1, (3.44a, b)

to all integer powers of ln(1/ε).
The result that R = 1 simplifies expression of the kinematic boundary condition,

which to the same level of approximation becomes ur =0, and implies that, as in
equation (3.11), −1/2 + I1,3(f ) + I0,3(g) = 0. When dominant contributions from both
f − and g− are included, the kinematic condition becomes

− 1
2

+ f −
{

1

a − z
− 1

a + z
+ · · ·

}
− f −′

{
2 ln(1/ε) + ln

4(a2 − z2)

R2
− 2 + · · ·

}

+

∫ a

−a

z − ξ

|z − ξ |3 (f −(ξ ) − f −(z) − (ξ − z)f −′(z)) dξ −
∫ 1

a

f +(ξ )

(ξ − z)2
dξ

+

∫ −a

−1

f +(ξ )

(z − ξ )2
dξ + · · · + g−

{
2

ε2R2
+ · · ·

}
= 0. (3.45)

Here, the integral of the Stokeslet distribution I1,3(f ) results in a total of three integral
terms, one over the surfactant-free region z ∈ (−a, a) and one over each of the two
surfactant-caps, where the correction δ in the distribution endpoints is omitted since,
as in the completely covered case, it turns out to be small like ε2. Integrals over the
surfactant-caps containing g+ are also algebraically small in ε and can be neglected,
since from (3.40), g+ = O(ε2/ ln(1/ε)).

Since the radius R = 1 and the surface tension σ =1 are constant on the surfactant-
free region, to the order of calculation required, the equation for continuity of
tangential stress (2.17) reduces to ∂zur + ∂ruz = 0, cf. (3.18). From the expressions (3.5)
to (3.8) for the velocity gradient in terms of the Stokeslet and mass source distributions,
this implies that I2,5(f ) + I1,5(g) = 0, so that when dominant contributions from f −

and g− are included we have

2

3ε2R2
f −(z)+· · ·+

∫ 1

a

f +(ξ )

(ξ − z)3
dξ+

∫ −a

−1

f +(ξ )

(z − ξ )3
dξ+· · ·− 2

3ε2R2
g−′+· · · = 0. (3.46)

This contains integrals of the Stokeslet distribution over each of the two surfactant-
caps, but other terms such as integrals of the Stokeslet distribution over the surfactant-
free region and terms involving g± are found to be of higher order.

Recalling that f + = O(1/ ln(1/ε)) from (3.40), we see that balancing a maximal
number of terms in equation (3.46) implies that f − and g−′ are both of order
O(ε2/ ln(1/ε)). In equation (3.45), all terms in f − are thus algebraically small and
can be neglected, and g− is of order ε2. Further, since R =1 to all integer powers of
ln(1/ε), at leading order, g− is independent of z with g− = ε2/4. Introducing order-one
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quantities f̃ −, g̃−, f −
n and g−

n , we therefore have

f − =
ε2f̃ −

ln(1/ε)
where f̃ − = f −

0 +
f −

1

ln(1/ε)
+ · · · +

f −
n

lnn(1/ε)
+ · · · , (3.47)

g− = ε2g̃− where g̃− = g−
0 +

g−
1

ln(1/ε)
+ · · · +

g−
n

lnn(1/ε)
+ · · · , (3.48)

g−
0 = 1

4
. (3.49)

These scalings for f − and g−, together with the result that R = 1 to all integer
powers of ln(1/ε), imply that the kinematic boundary condition (3.45) simplifies to
become

g̃− = 1
4

+
1

2 ln(1/ε)

(∫ 1

a

f̃ +(ξ )

(ξ − z)2
dξ −

∫ −a

−1

f̃ +(ξ )

(z − ξ )2
dξ

)
, (3.50)

to all integer powers of ln(1/ε), and gives g− in terms of f +. Also, on differentiating
this equation with respect to z, the integrals of the Stokeslet distribution over the
surfactant-caps can be eliminated from equation (3.46), and we find that

f − = − 1
2
g−′, (3.51)

which gives f − via g− in terms of f + to all integer powers of ln(1/ε).
Given the scalings (3.40) for f + and g+, a search for different scalings for f − and

g− that balances a subset of terms in equation (3.46) leads either to an inconsistency
or to the scalings just found. These contrast with the scalings found by Buckmaster
(1972) and Acrivos & Lo (1978) for a bubble that is completely free of surfactant
and is situated in a flow with the same strain, for which pi = O(1/ε) and f and g are
both of order O(ε2).

z ∈ (a, 1).

The boundary conditions on the surfactant-caps lead to equations for f + and g+

that parallel those already found in § 3.1 for f and g when a bubble is completely
covered in surfactant.

The exact form of the no-slip boundary condition uz = 0 is z + I0,1(f ) + I2,3(f ) +
I1,3(g) = 0, per (3.9). When the domain of integration for each integral is subdivided
into surfactant-caps z ∈ (−1, −a) ∪ (a, 1) and the surfactant-free region z ∈ (−a, a),
the integrals I0,1(f ) and I2,3(f ) consist of an integral over z ∈ (a, 1) that is singular as
r → 0 and has an expansion similar to that used in deriving equation (3.10), together
with integrals over z ∈ (−1, −a) and z ∈ (−a, a) that are regular as r → 0. From
the known scalings of f + and f −, the contribution from the surfactant-free region
is found to be algebraically small in ε and can therefore be neglected, while the
contributions from both surfactant-caps must be retained. When contributions to
I1,3(g) are estimated in the same way, I1,3(g) is found to be algebraically small in ε,
so that, as for the surfactant-covered bubble, it can be neglected. As a consequence,
the boundary condition takes a form that resembles (3.10), namely,

z + 2

{
f +

(
2 ln(1/ε) + ln

4(z − a)(1 − z)

R2
− 1

)
+

∫ 1

a

f +(ξ ) − f +(z)

|z − ξ | dξ

+

∫ −a

−1

f +(ξ )

z − ξ
dξ + · · ·

}
= 0, (3.52)

which holds to all integer powers of ln(1/ε).
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Similar reasoning shows that the no-slip condition ur = 0 can be expressed in a
form resembling (3.12), as

− 1
2

+ f +

{
1

1 − z
− 1

z − a

}
− f +′

{
2 ln(1/ε) + ln

4(z − a)(1 − z)

R2
− 2

}

+

∫ 1

a

z − ξ

|z − ξ |3 (f +(ξ ) − f +(z) − (ξ − z)f +′(z)) dξ +

∫ −a

−1

f +(ξ )

(z − ξ )2
dξ + · · ·

+ g+

{
2

ε2R2
+ · · ·

}
= 0 (3.53)

to all integer powers of ln(1/ε).
A simpler expression for g+ is given by differentiating equation (3.52) with respect

to z and adding twice equation (3.53), which gives

g+ =
ε2

2

d

dz
(R2f +), (3.54)

to all integer powers of ln(1/ε). This is the same as equation (3.17) for a surfactant-
covered bubble under f 	→ f + and g 	→ g+.

In considering the continuity of stress boundary conditions when z ∈ (a, 1), we find
that the analogy between a completely surfactant-covered bubble and surfactant-caps
on a partly surfactant-covered bubble is even more direct. In the completely covered
case, the continuity of stress boundary conditions (2.17) and (2.18) reduce to equations
(3.24a) and (3.24b), and on retracing this analysis for surfactant-caps, it is found in
considering, for example, the right-hand cap z ∈ (a, 1) that no contributions occur
from the Stokeslet and mass source distributions on either the surfactant-free region
or the left-hand cap. Further, no non-local or additional local contributions occur
from the right-hand cap. As a consequence, equation (3.24a) is modified by putting
f̃ 	→ f̃ +, and in equation (3.24b), since the pressure inside the bubble is independent
of z and such that Λp̃i = 1 from (3.44), the continuity of stress boundary conditions
reduce to

dσ

dz
=

4Λf̃ +

R
, σ = R (3.55)

to all integer powers of ln(1/ε). When σ is eliminated, since Λp̃i =1, the first equation
can be written as

d

dz
R2 =

8f̃ +

p̃i

. (3.56)

The solution can now be constructed at successive powers of ln(1/ε). At leading
order, from equation (3.52),

f +
0 = − 1

4
z. (3.57)

When this is substituted in (3.56), the first-order equation for R0 that results can readily
be integrated with respect to z. The boundary conditions on R are that R(1) = 0 to all
orders from (2.15), and a second boundary condition that, strictly, arises as z → a+ as
a result of matching with the solution of the stick-slip problem in a neighbourhood of
z = a. However, since the leading-order solution is to be continuous at z = a, R0(a) = 1,
and hence,

R0 =

(
1 − z2

1 − a2

)1/2

, pi0 = 1 − a2. (3.58a, b)
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From equation (3.54), it follows that

g+
0 =

3z2 − 1

8(1 − a2)
. (3.59)

The solution at higher orders.

The solution for f +
1 is given by equation (3.52) on substituting the leading-order

solution (3.57) for f +
0 and (3.58) for R0, from which we have

f +
1 = 1

8

(
z ln

4(1 − a2)(z − a)

(z + a)
+ 2a − 3z

)
. (3.60)

This includes contributions due to the leading-order Stokeslet distribution over both
surfactant-caps. A straightforward but lengthier calculation gives R1 in terms of pi1

when equation (3.56) is integrated with respect to z with the one boundary condition
R1(a) = 0. The other boundary condition R1(1) = 0 then determines an expression for
the pressure pi1, and we find that

R1 =
(z − a)

4((1 − z2)(1 − a2))1/2

(
(z + a) ln

(z − a)(1 + a)

(z + a)(1 − a)
+ 2a(1 − z)

)
, (3.61)

pi1 = 1
2
(1 − a)(3 + a) − (1 − a2) ln 2(1 − a). (3.62)

The relation (3.44b) together with (3.58b) determines Λ0 = 1/(1 − a2) and
Λ1 = −pi1/(1 − a2)2, where pi1 is given in (3.62).

The solution for g+
1 is given by equation (3.54), and its computation is facilitated in

the following way. Integration of equation (3.56) implies that R2 = (8/p̃i)
∫ z

1
f̃ +(ξ ) dξ

to all integer powers of ln(1/ε). Equation (3.54) can therefore be written as
g̃+ = (2/p̃i)(d

2/dz2)(
∫ z

1
f̃ +dξ )2 to the same order, from which the solutions for f +

0

and f +
1 give

g+
1 =

1

8(1 − a2)

(
az(1 + 2a2 − 3z2)

z2 − a2
+ 1

2
(1 + a2 − 6z2) ln

4(1 − a2)(z − a)

(z + a)

+ (3z2 − a2) ln 2(1 − a) − (3 + a)(3z2 − 1)

2(1 + a)
+ a − 3 − 3az + 9z2

)
. (3.63)

We note that f +
1 → −αz/4, R1 → 0, pi1 → α and g+

1 → α(3z2 − 1)/8 as a → 0, which is
consistent with the solution (3.35) in the completely surfactant-covered case.

On the surfactant-free region z ∈ [0, a), the solution for g−
1 is given by equation

(3.50) on recalling that f +
0 = −z/4. Hence

g−
1 = − 1

8
ln

1 − z2

a2 − z2
+ 1

4

(
1

1 − z2
− a2

a2 − z2

)
, (3.64)

from which the solution for f −
0 follows from (3.51) as

f −
0 = − 1

8
z

(
1

1 − z2
− 1

a2 − z2

)
− 1

4
z

(
1

(1 − z2)2
− a2

(a2 − z2)2

)
. (3.65)

In principle, the expansions can be calculated at yet higher orders by continuing
the sequence of steps outlined above. We note, however, that the integrals in equation
(3.52) preclude the simple, closed-form expressions for the solution for f + that could
be found to all integer powers of ln(1/ε) for the completely surfactant-covered bubble.
On the other hand, it is already clear from the orders given above that the expansions
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have a non-uniformity at z = a, i.e. in a neighbourhood of the edge of the surfactant-
cap. This is the neighbourhood of the stick–slip problem alluded to earlier, and to
investigate it we must find the most singular part of f ± as z → a to all integer powers
of ln(1/ε). This is discussed in the Appendix.

Although it is not possible to find a simple expression for f + valid for general
O(1) values of a > 0 to all integer powers of ln(1/ε), such an expression can be found
when a is algebraically small in ε. Further, there is an advantage to having such
an expression when computing steady-state-solution branches: since the completely
surfactant-covered solutions of the branch are computed to all orders of ln(1/ε), a
similar higher-order solution for partially covered bubbles leads to continuity at the
transition point from partial to complete covering. We claim that in this limit, as
a → 0, the solution of equation (3.52) for f + recovers the solution of equation (3.9)
for f , that is f + = −αεz/(4 ln(1/ε)) where αε is defined in (3.35), and it is valid to all
integers powers of ln(1/ε) when a is algebraically small in ε, while we have shown
above that it is valid to O(1/ ln(1/ε)) for values of a that are O(1). On integrating
(3.56) and applying the boundary conditions R(a) = 1 and R(1) = 0, we then find that

R(z) =

(
1 − z2

1 − a2

)1/2

, p̃i = αε(1 − a2), (3.66)

which is valid to all integer powers of ln(1/ε) when a is algebraically small in ε, and
to O(1/ ln(1/ε)) at larger values of a. Since Λp̃i = 1 to all orders of ln(1/ε), it follows
that

Λ =
1

αε(1 − a2)
, (3.67)

to the same order of approximation as (3.66).
The constraints for conservation of bubble volume and conservation of total

surfactant can be evaluated to the same order of approximation. Conservation of
bubble volume (2.20) gives the relation

ν = ε2/3

(
1 + a + a2

1 + a

)1/3

. (3.68)

Conservation of total surfactant (2.21), together with (3.68) and the linear equation
of state (2.16), simplifies to∫ 1

a

(1 − R)R dz = βε1/3

(
1 + a + a2

1 + a

)2/3

, (3.69)

where we have used σ = R, per (3.55), and the fact that Γ = 0 for z ∈ [0, a). The
expression (3.69) provides a relation between a and ε, subject to the condition
ε < (3π − 8)3/(12β)3 which is required by (3.38) for the partially covered case to hold.
An expression for the capillary number Q in terms of ε and a now follows from
(3.67), (3.68), and the relation ν/Q = 1/(ε ln(1/ε)Λ), viz.

Q = ε5/3 ln(1/ε)

(
1 − α

ln(1/ε)

)
(1 + a + a2)1/3

(1 − a2)(1 + a)1/3
, (3.70)

which is valid to all integer powers of ln(1/ε) for a algebraically small in ε and
to leading order for all a. Together, equations (3.69) and (3.70) provide a relation
between the capillary number Q and the bubble slenderness ratio ε for the partly
covered case. When a nonlinear equation of state is substituted for the linear one, the
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Figure 2. Steady-state response curves (D versus Q∗ = Q/(1 − β)) for a bubble with a
linear equation of state. Curves are shown for β =0.1, 0.2, 0.6. Solid curves represent
completely surfactant-covered bubbles and dashed curves represent steady bubbles with
stagnant surfactant-caps. Capital letters mark the locations of the plots in figure 3.

relation between a and ε of equation (3.69) is modified while equation (3.70) remains
unchanged.

3.3. Steady-state response

In order to characterize the steady-state shapes, we introduce the deformation
parameter

D =
1 − ε

1 + ε
,

and a rescaled capillary number Q∗ = Q/(1−β), following Stone & Leal (1990), which
is based on the equilibrium tension σ0(1 − β) instead of the clean surface tension
σ0. Figure 2 shows the response curves for D versus Q∗ for three representative
values of β . A solid line denotes completely surfactant-covered bubbles, for which
(3.37) holds, while a dashed line, described by (3.70), is associated with partially
covered ‘stagnant-cap’ bubbles. The bubble shapes associated with locations A − D

on the β = 0.2 response curve are depicted in figure 3. The top bubble in the figure is
completely covered with surfactant, while the lower three are stagnant-cap bubbles,
with the location of the cap edge denoted by ‘+’ markers.

Unlike the solution branches in the clean bubble case (Buckmaster 1972), for which
steady states exist for arbitrarily large capillary number, our solutions exhibit a
critical capillary number Qc which depends on β , above which steady solutions no
longer exist. Each response curve shows that there are two steady-state solutions for
a given value of Q satisfying Q<Qc. In related free-surface flow problems, e.g. drop
deformation in a clean fluid system with viscosity ratio λ=µi/µ > 0 (Acrivos & Lo
1978), or steady bubbles with surfactant in an extensional Stokes flow that is two-
dimensional (Siegel 1999), the turning point corresponds to a change in stability; the
lower-branch solutions are stable steady states, whereas the upper-branch solutions
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Figure 3. Steady profiles at capillary number marked by points A−D on the β = 0.2 response
curve. These are shapes predicted to be observed in physical space, and the equivalent
unstrained spherical bubble of the same volume has radius 1 and constant surfactant
concentration Γ = 1. The edges of the stagnant caps are indicated by ‘+’ markers.

are unstable. This is most probably the case here, although we do not investigate
stability of the solution branches. The turning point Qc represents the maximum
possible strain rate for which the bubble will advance to a steady state – for Q>Qc

the bubble will burst. Time-dependent slender-bubble solutions, presented in § 5, show
that the unsteady dynamics exhibit tip-streaming for Q > Qc.

A plot illustrating the critical capillary number Q∗
c for bursting as a function of β is

given in figure 4. Shown for comparison are values of Q∗
c computed by Stone & Leal

(1990) via boundary integral numerical simulations of the evolution of a time-evolving
bubble. The results of Stone & Leal (top two curves in the figure) are for viscosity
ratio λ=1.0, and incorporate non-zero surface diffusion of surfactant, quantified via
the dimensionless parameter γ = σ0(1 − β)a/(µDs). Our results correspond to λ= 0
and γ = ∞ (lower curve). Despite the different parameter values, the curves show
similarities in the magnitude of the critical capillary number and its variation with
β . Further numerical simulations of Milliken et al. (1993) indicate that the critical
capillary number Q∗

c is insensitive to the value of λ in the range 0.1 − 10 for β = 0.3
and γ = 1000 (sensitivity to λ at this value of γ for other β was not considered).
Our asymptotic results suggest that for negligible surface diffusion, this insensitivity
should hold for β � 0.3, because the lower-branch of steady (stable) bubble solutions
are completely surfactant-covered in this range of β and the bubble surface is stagnant,
so that the effect of the interior fluid is minimized. In contrast, for β � 0.3, there are
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Figure 4. The critical capillary number Q∗
c =Qc/(1 − β) as a function of β . The top two

curves are from Stone & Leal (1990), and are for a viscosity ratio λ= 1 and surface diffusion
γ = 10 and 1000. The lower curve shows our asymptotic result for λ= 0 and γ = ∞.

partially covered steady solutions on the lower-branch of the response curve, for
which only the bubble end-caps are stagnant, so that the interior fluid can have a
significant effect on bubble deformation and response. For this range of β , Q∗

c should
be sensitive to variations in λ.

Surface diffusion of surfactant can have an effect on the critical capillary number,
as shown in the figure. Decreasing the surface diffusion reduces the slip in surfactant-
covered regions towards zero, and typically decreases the critical capillary number
for a given surfactant concentration. The trend shown in the figure suggests that the
agreement between our asymptotic results and the results of numerical simulation
should be even better for yet larger γ . The physical consequences of other variations
in parameters are discussed in Stone & Leal (1990) and Milliken et al. (1993).

The steady-solution branches for the nonlinear equation of state (2.6) are
qualitatively the same as in figure 2. It is instructive to compare the critical capillary
number Qc for bursting as determined by our analysis, with the results found
via numerical simulation of a time-evolving bubble (Eggleton et al. 2001) and by
experiment (Hu, Pine & Leal 2000) for the nonlinear equation of state. To do
so, define Γeq to be the uniform surfactant concentration on an unstrained spherical
bubble with radius a and surface tension σeq , and introduce the parameters x = Γeq/Γ∞
and the elasticity number E = RT Γ∞/σeq . Then x is a measure of the total amount
of surfactant on the bubble surface, and σeq/σ0 is a monotone decreasing function
of x, since from (2.6) they are related by σeq/σ0 = (1 − E ln(1 − x))−1. Figure 5 shows
the dependence of a rescaled critical capillary number Qcσ0/σeq on σeq/σ0 for fixed
E = 0.2, following Eggleton et al. (2001). The bottom curve is from the numerical



262 M. R. Booty and M. Siegel

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

σeq/σ0

Q
c 
σ

0/
σ

eq

x

Figure 5. Comparison of the critical capillary number Qcσ0/σeq (following Eggleton et al.
2001) for bursting. (o) Asymptotic theory, λ= 0; (*) experiment (Hu et al. 2000), λ= 0.1; (+)
simulation (Eggleton et al. 2001), λ= 0.05. The direction of increasing x = Γeq/Γ0 is shown in
the figure.

simulations of Eggleton et al. (2001)†, computed using a boundary integral method
with viscosity ratio λ= 0.05 and surface diffusion parameter Pe0 = σeqa/(µDs) set at
103σ0/σeq . The middle curve is from the experiments of Hu et al. (2000) on drops
with λ=0.1, as presented in Eggleton et al. (2001). The upper curve is from our
asymptotic theory with λ= 0 and Pe0 = ∞. The curves show close correspondence in
the magnitude of the critical capillary number and its variation with σeq/σ0 despite
the different values of λ and Pe0. The physical significance of the non-monotone
dependence of critical capillary number on σeq/σ0 is discussed in Eggleton et al.
(2001) and, for drops of unity viscosity ratio, in Eggleton, Pawar & Stebe (1999).

4. Steady-state solutions near an endpoint
We noted that the expansions constructed in § 3 predict a vanishing or zero surface

tension at the bubble endpoints, so that they lose validity there. Also, near a rounded
endpoint, the assumption that the surface shape R′ is bounded no longer holds. The
source of the non-uniformity can be traced to the expansion of the integrals Im,n(φ),
which were defined at (3.4), over the source distributions φ = f and φ = g, and more
specifically to the fact that the expansion of the functions wm,n(r, z) introduced in
the Appendix differs, depending on whether the field point approaches the source
distribution away from its endpoints or near an endpoint.

† An error in the abscissa locations of the curve points has been corrected.
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Near the distribution and away from its endpoints, derivatives of wm,n(r, z) in
the axial or z-direction, i.e. in the direction parallel to the distribution axis, are of
order one, while r-derivatives are large, whereas in a neighbourhood of an endpoint,
derivatives with respect to both r and z are large.

The solution in a neighbourhood of the endpoint z =1 is readdressed by introducing
a local coordinate for z and observing the expansion of the functions wm,n(r, z) as
r → 0 and z → 1. We introduce a local coordinate η and a rescaling for the bubble
surface, defined by

z = 1 − δ + ε2η, r = ε2R̂(η), (4.1)

so that R(z) = εR̂(η). The scalings for the interior pressure pi and capillary number
ratio ν/Q are as above at equations (3.21) and (3.23). The scalings for the source
distributions f and g are those of the surfactant-covered regions, at equations (3.13),
(3.14) and (3.40), while a rescaling for the surface tension σ (z) = εσ̂ (η) is suggested
by the behaviour of σ (z) as z → 1. We therefore put

pi =
p̂i

ε2 ln(1/ε)
,

ν

Q
=

1

ε ln(1/ε)Λ
, f =

f̂

ln(1/ε)
, g =

ε2ĝ

ln(1/ε)
, σ = εσ̂ , (4.2)

where rescaled quantities are all of order one and have expansions in integer powers
of ln(1/ε), e.g.

f̂ = f̂ 0 +
f̂ 1

ln(1/ε)
+ · · · . (4.3)

Since the fluid in the bubble interior is inviscid, the interior pressure is independent of
z and equal to the value found earlier in equation (3.27) when a = 0 and in equation
(3.58b) when a > 0, that is

p̂i0 = 1 − a2 (4.4)

for all a. Expansion of the integrals Im,n(φ) now follows the method described in the
Appendix, but where the source distributions f and g are expanded in Taylor series
about the endpoint location z =1.

The no-slip boundary condition ur = 0 is given by equation (3.11), and at
leading order in its local expansion, terms of I1,3(f ) and I0,3(g) balance at order
O(1/ε2 ln(1/ε)) to give

f̂ 0(1)(
η2 + R̂2

0

)1/2
+

ĝ0(1)

R̂2
0

(
1 − η(

η2 + R̂2
0

)1/2

)
= 0. (4.5)

In the no-slip boundary condition uz =0 of equation (3.9), terms of I0,1(f ) and I2,3(f )
balance at order O(1) to give

f̂ 0(1) = − 1
4
. (4.6)

This is the same as the values of both f0 and f +
0 of equations (3.16) and (3.57) as

z → 1. When (4.6) is substituted into equation (4.5), we find that the bubble surface
in a neighbourhood of the endpoint is the paraboloid

R̂2
0 = α2

c − 2αcη, (4.7)

where the parameter αc = 4ĝ0(1). At equation (4.11) this is seen to take the value
αc =(1 − a2)−1, and as a consequence ĝ0(1) is the same as both g0 when a =0 and g+

0

when a > 0 as z → 1, from equations (3.35) and (3.59). It also ensures that R̂0 matches
as η → −∞ with the ellipsoids R0 of equation (3.27) for the surfactant-covered bubble
(a = 0) and of equation (3.58a, b) for the partially covered bubble (a > 0) as z → 1.
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In terms of the local variables of (4.1) and (4.2), but before expansion of the
integrals Im,n(φ) that give pe and the components of the rate of strain tensor, the
stress-balance boundary conditions on the bubble surface (2.17) and (2.18)become

2(
1 + R̂2

η

)(
R̂η

∂ur

∂r
+

(
1 − R̂2

η

)
1
2

(
∂ur

∂z
+

∂uz

∂r

)
− R̂η

∂uz

∂z

)
=

−1

ε2 ln(1/ε)Λ

σ̂η(
1 + R̂2

η

)1/2
,

(4.8)

p̂i

ε2 ln(1/ε)
− pe +

2(
1 + R̂2

η

)(
∂ur

∂r
− R̂η

(
∂ur

∂z
+

∂uz

∂r

)
+ R̂2

η

∂uz

∂z

)

=
1

ε2 ln(1/ε)Λ

σ̂

R̂
(
1 + R̂2

η

)1/2

(
1 − R̂R̂ηη(

1 + R̂2
η

))
, (4.9)

where an η-subscript denotes the derivative. Then, from equations (3.3) and (3.5)
to (3.8), expansion of the integrals Im,n(φ) together with the expression (4.7) for the

known form of R̂0 gives the leading-order result that

pe =
−1

2ε2 ln(1/ε)
(
η2 + R̂2

0

)1/2
,

(
∂ur

∂r
, 1

2

(
∂ur

∂z
+

∂uz

∂r

)
,
∂uz

∂z

)
=

1

4αcε2 ln(1/ε)

R̂0

η2 + R̂2
0

(−R̂0, −η, R̂0).

When these are substituted in the tangential and normal components of the stress-
balance boundary conditions, further use of (4.7) gives

σ̂0 = Λ(2αc(αc − η))1/2

(
2p̂i0(αc − η) + 1

3αc − 2η

)
,

dσ̂0

dη
=

−Λ

(2αc(αc − η))1/2
. (4.10)

These last two relations for σ̂0 are consistent only if p̂i0αc = 1, and then from the
expresssion (4.4) for p̂i0 we find

σ̂0 = Λ(2(1 − (1 − a2)η))1/2, αc = (1 − a2)−1. (4.11)

The expansion of the surface tension σ that (4.11) provides matches as η → −∞ with

that of (3.35) when a = 0 and of (3.55) and (3.58) when a > 0 as z → 1. It also provides
a uniformly positive leading-order expression for the surface tension over the bubble
surface, including the endpoints, at which σ = εΛ. Finally, since z =1 and R =0 at
the endpoint, (4.1) and (4.7) give the leading-order estimate for δ, that

δ =
ε2

2(1 − a2)
+ · · · . (4.12)

5. Unsteady evolution
5.1. Governing equations

The equations governing the unsteady evolution of a slender axisymmetric bubble
with insoluble surfactant at the interface are derived in this section. The bubble
length l is now time-dependent, so it is convenient to non-dimensionalize lengths by
l0, defined as the half-length of the initial bubble shape. Other variables are made
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non-dimensional as in (2.13), but with l replaced by l0 and b by b0, the initial half-
width; dimensionless groupings are given by (2.14) after the same substitution. Define
the non-dimensional length

L(t) =
l

l0
,

and note that L(0) = 1. The constraints on bubble volume (2.20) and surfactant
concentration (2.21) are now

2ν3

3ε2
=

∫ L(t)

0

R2dz (5.1)

and

ν2

ε
=

∫ L(t)

0

Γ R
√

(1 + ε2R′2) dz. (5.2)

At the interface r = εR(z), the stress-balance conditions (2.17) and (2.18) still hold
and are supplemented by the kinematic condition, which takes the non-dimensional
form

ur = ε
∂R

∂t
+ εR′uz, (5.3)

where time has been non-dimensionalized by G−1. An equation for the evolution of
surfactant concentration Γ is derived in coordinate-free form in Wong, Rumschitzki &
Maldarelli (1996), and in cylindrical coordinates, its non-dimensional form is

∂Γ

∂t
+

1

R(1 + ε2R′2)1/2

∂

∂z

[
RΓ

(1 + ε2R′2)1/2
(εurR

′ + uz)

]
− ε2R′

1 + ε2R′2
∂R

∂t

∂Γ

∂z

+
Γ (ur − εR′uz)

εR(1 + ε2R′2)

[
1 − ε2RR′′

1 + ε2R′2

]
= 0, (5.4)

where a prime denotes the derivative with respect to z. Here, we have assumed the
limiting case in which the surface Péclet number, defined by Pe = Gl20/D with surface
diffusivity D, tends to infinity, so that surface diffusion is negligible compared with
surface transport.

As in the steady state, the flow exterior to the bubble is described by introducing
Stokelets and point mass sources on the bubble axis z ∈ [−L + δ, L − δ], where δ

is time-dependent. The components of velocity and pressure are given in equations
(3.1)–(3.3), while expressions for the velocity gradient are given in equations (3.5)–
(3.8). The boundary conditions are approximated by expanding the integrals Im,n(·) as
r → 0 and keeping the dominant part of each expansion, in a way similar to that for
constructing the steady solutions of § 3. To leading order in f and g, the tangential
stress balance (2.17) has the form

3εR′ − 4(g′R − R′g)

εR2
+

4f

εR
+ · · · =

ν

Q
σ ′, (5.5)

while the normal stress balance (2.18) at leading order is

pi − 1 − 4g

ε2R2
+

4R′f

R
+ · · · =

ν

Qε

σ

R
. (5.6)

The kinematic condition (5.3) at leading order is given by

Rt + zR′ = −(2f ′R + 4f R′) ln(1/ε) +
2g

ε2R
− R

2
+ · · · . (5.7)
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In each of the above equations, an ellipsis denotes terms in f and g that are smaller
than those kept by a factor of at least ε ln 1/ε.

A scaling that is consistent with the above equations is g ∼ f ∼ O(ε2), ν/Q ∼ ε,
pi ∼ 1, and t ∼ 1. We therefore introduce order-one quantities ḡ = g/ε2, f̄ = f/ε2,
Q̄= εQ/ν, in terms of which the leading-order stress-balance equations and the
kinematic condition simplify to

−3R2R′ − 4ḡR′ + 4ḡ′R − 4f̄ R = −σ ′R2

Q̄
, (5.8)

(pi − 1)R2 − 4ḡ =
σR

Q̄
, (5.9)

Rt + zR′ =
2ḡ

R
− 1

2
R. (5.10)

The mass-source density ḡ can be eliminated from equation (5.10) by using (5.9),
which leads to the evolution equation

∂R

∂t
+ zR′ + R = 1

2

(
piR − σ

Q̄

)
, (5.11)

for R. When σ is constant, this equation is equivalent on rescaling to the evolution
equation in Hinch (1980). The tangential stress-balance equation (5.8) decouples from
equation (5.11), and can be regarded as a relation for the Stokeslet density f̄ , if
required, while equation (5.9) provides a relation for ḡ.

An equation for evolution of surfactant is obtained from (5.4) by estimating the
velocity terms using (3.1) and (3.2) and the expansion of the integrals Im,n(·). After
incorporating the above scalings for f and g, we find

∂Γ

∂t
+

1

R

∂

∂z
(zRΓ ) +

Γ

R

[
2ḡ

R
− 1

2
R − R′z

]
= 0. (5.12)

The density ḡ is eliminated from this last equation using the normal stress-balance
equation (5.9), to give

∂Γ

∂t
+ z

∂Γ

∂z
+

Γ

2R

(
piR − σ

Q̄

)
= 0. (5.13)

The pressure pi is determined as follows. Differentiating the volume constraint
(5.1) with respect to t , using equation (5.11) and the fact that R(L(t), t) = 0, together
with the linear equation of state and the leading-order expression of conservation of

surfactant (5.2), which is ν2/ε =
∫ L

0
Γ Rdz, we obtain

pi = 1 +
3ε2

2Q̄ν3

(∫ L(t)

0

Rdz − βν2

ε

)
. (5.14)

It follows directly from the two evolution equations for R and Γ , (5.11) and (5.13),
that the leading-order expression for the total amount of surfactant is conserved.

The system of equations (5.11), (5.13) and (5.14) with the equation of state governs
the time-dependent bubble shape and surfactant distribution away from the bubble
endpoints, and is the main result of this section. The system is not closed, however,
since the bubble half-length L(t) which appears in (5.14) remains undetermined. It is
found by a local analysis near the bubble endpoints, as shown in the next subsection.
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5.2. Endpoint expansions

Evolution equations valid near the bubble endpoint z = L(t) are derived by expanding
the boundary conditions in powers of L(t)−z. The approach is to expand the integrals
Im,n(·) in a neighbourhood of the bubble endpoints, and the procedure we use here
is similar to that employed by Tillett (1970). Details are given for z → L; analogous
expansions hold for z → −L.

We assume the bubble has rounded ends, so that

R2(z) = A1(L − z) + A2(L − z)2 + · · · (A1 �= 0), (5.15)

as z → L. Substituting (5.15) into the time-dependent analogue of (3.4), in which
1 	→ L(t) in the limits of integration, Taylor expanding φ(ξ ) about ξ =L(t), and
evaluating the resulting integrals, we find

Im,n(z) ∼ −φ(L)δm−n+1

m − n + 1
+

φ′(L)δm−n+2

m − n + 2
+ O(φδm−n+3)

+

[
φ(L)δm−n +

ε2A1nφ(L)δm−n−1

2(m − n − 1)
+ O(φδm−n+1, ε2φδm−n)

]
(L − z)

+ O[(L − z)2] (5.16)

as z → L, where it is understood that δp/p is replaced by − ln(1/δ) in any term for
which the exponent p of δ is zero.

The endpoint expansions (5.16) are substituted in equations (3.1)–(3.3) for the
velocity components and equations (3.5)–(3.8) for the velocity gradient. Upon
incorporating expansion (5.15) for the bubble shape, the kinematic condition takes
the form

L̇ = L − 2f (L) ln δ +
g(L)

δ
(5.17)

at leading order O((L − z)−1/2), where f (L), g(L) and δ are all time-dependent. At
the next order in L − z, the kinematic condition (5.3) provides an equation for the
evolution of A1,

Ȧ1 = A1

{
− 1 +

(
3
2

− ε2A1

2δ

)(
f (L)

δ
+

g(L)

2δ2

)}
. (5.18)

The tangential and normal stress-balance equations, respectively, imply

6f (L)

δ
+

3g(L)

δ2
− ε2A1

2δ

(
3f (L)

δ
+

2g(L)

δ2

)
− 3 = − ν

Q
σ ′(L), (5.19)

pi − 6f (L)

δ
− 2g(L)

δ2
=

4

ε2A1

ν

Q
σ (L), (5.20)

at leading order.
We suppose that the initial data for the unsteady evolution is a steady-state solution,

as determined in § 3. This suggests the scalings σ (L) ∼ ε, A1 ∼ 1 and σ ′(L) ∼ 1/ε, per
equation (4.11). Control parameters are scaled according to the evolution equations
that hold away from the bubble endpoints, as derived in § 5.1, so that ν/Q ∼ ε and
pi ∼ 1. We envisage that the unsteady evolution is driven by a sudden increase of
strain rate or decrease of ν/Q from its steady value of O(1/ε ln(1/ε)) found in § 3,
which causes a sudden decrease in pi from O(1/ε2 ln(1/ε)). We claim that these
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scalings imply

f (L)

δ
∼ g(L)

δ2
∼ 1. (5.21)

To see this, suppose to the contrary that f (L)/δ ∼ g(L)/δ2 � 1. Then a non-trivial
leading-order balance in equations (5.19) and (5.20) requires that ε2A1/(2δ) ∼ 1. A
leading-order balance in equations (5.18)–(5.20) yields three distinct relations for
the two quantities f (L)/δ and g(L)/δ2 which cannot be simultaneously satisfied.
Similarly, if we suppose that f (L)/δ ∼ g(L)/δ2 � 1, then the resulting expression for
pi in equation (5.20) will be inconsistent with (5.14). Therefore, substituting the scaling
(5.21) into (5.17) and recalling that δ � 1, we find that the leading-order evolution
equation for the bubble half-length is given by

L̇(t) = L. (5.22)

In physical terms, this states that the part of the surface in a neighbourhood of
the bubble tips that is covered with diffusion-free surfactant is pulled along by the
imposed flow, unperturbed, at speed uz = z.

5.3. Numerical solutions

A closed system of slender-bubble evolution equations is given by (5.11), (5.13), (5.14)
and (5.22), with the equation of state σ = 1−βΓ . These are solved numerically, starting
from a deformed steady state with β = 0.5 and ε = 0.0134, which is the smallest value
of ε for a steady surfactant-covered bubble, as determined from equation (3.38). The
unsteady evolution is driven by a large far-field strain, with Q̄ =1 and, from (3.36),
ν = ε2/3, which implies that the capillary number is Q = ε−1/3.

The result of the simulation is shown in figure 6, which shows the time-evolution of
the upper-right-hand quadrant of a four-fold symmetric bubble. The initial slender-
bubble shape is given by the leftmost curve in the figure, and we note that here the
r-axis is in the scaled variable, so that when z and t are zero, R is unity. The evolving
bubble surface is shown at subsequent times t > 0.

During the initial phase of deformation, surfactant is swept toward the bubble ends
or poles, at which the bubble surface is stagnant, so that it is pulled along by the
imposed flow, leading to a filamenting instability or tip-streaming. The filament tips
move at the velocity of the imposed extensional flow, which is equal to the z-location
of the tips. Figure 6(b) depicts the surfactant concentration Γ (z) on the bubble surface
at time t = 3.5. Note that over most of the main body of the bubble, the surfactant
concentration is near zero, while on the filaments it is large. This is due to the outer
straining field sweeping surfactant from the main body and onto the filaments and
due to the relatively small surface area of the filaments, which combine to produce a
high surfactant concentration there.

Figure 6 shows that the ‘clean’ main-bubble body eventually has a form that is
reminiscent of the steady pointed shapes of Buckmaster (1972). Hinch (1980) has
considered the evolution of a clean slender bubble in an axisymmetric straining flow,
and found that there are ‘shape preserving’ solutions in the form of polynomials in
z with time-dependent coefficients. One such polynomial solution is of the form of
the steady (stable) Buckmaster bubble, but with time-dependent coefficients. In our
scaling, this Hinch polynomial solution to equation (5.11) for a clean bubble with
σ = 1 is

R(z, t) = A(t)(1 − z2/L2), (5.23)
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Figure 6. (a) Bubble shapes R(z, t) for t = 0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. Note the tip-streaming
thread at the right-hand endpoint. �, the clean-bubble solution given by (5.23) and (5.24), with
A(0) determined as described in the text. (b) Bubble shape R(z, t) and surfactant concentration
Γ (z, t) at t = 3.5.

where A and L satisfy

A(t) =
1

4Q̄
+

(
A(0) − 1

4Q̄

)
exp

(
− 1

2
t
)
, L =

5

4

ν3

ε2A(t)2
. (5.24)

The relation for A follows from substituting equation (5.23) into (5.11), and that
for L follows from consideration of volume conservation (5.1). Within the class of
solutions investigated by Hinch (1980), (5.23) is of particular significance, since it
approaches the steady solution of Buckmaster (1972) in the limit t → ∞, and is stable
to all perturbations of the form c(t)zm for even integers m > 2.

The circles in figure 6(a) represent the bubble profile given by (5.23) and (5.24) at
three different times. The parameter A(0) is determined by fitting (5.23) to the main-
bubble body of the tip-streaming solution at time t = 2.5. The markers at subsequent
times t = 3.0, 3.5 are then generated from (5.23) and (5.24), and show good agreement
with the bubble profiles as found in the simulation with surfactant. This suggests that
for t � 2.5 the main body evolves essentially as though it were a clean bubble, and is
approaching the steady stable Buckmaster profile.
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Figure 7. Evolution of the local minimum in R at the point where the main bubble joins the
tip-streaming thread. The interface is shown at times t = 3.0 − 4.2 in increments of 0.2. �, the
numerical grid-points at the final time, indicating that the minimum is well-resolved.

Figure 7 shows a close-up of the interface shape near a local minimum that
develops in R at some time t > 0. The interface tends to a double cone-shape, where
the left-cone angle is found to approach that of the stable steady Buckmaster bubble,
for which εR′ = −1/(40Q3). The profiles are suggestive of an eventual pinch-off, with
shallow cone angles that are consistent with the slenderness assumption. A more
detailed study of possible pinch-off will appear in a future paper.

6. Conclusion
Slender-body theory has been used to study the steady-state deformation and time-

dependent evolution of an axisymmetric bubble in zero-Reynolds-number extensional
flow, when insoluble and surface-diffusion-free surfactant resides on the bubble
surface. The presence of surfactant introduces a number of important differences
compared to the theory for clean bubbles developed by, e.g. Taylor (1964), Buckmaster
(1972, 1973), Acrivos & Lo (1978) and others. In the limit of zero surface diffusion,
insoluble surfactant immobilizes the surface of a steady bubble. The resulting scalings
for the Stokeslet and source terms, f and g, that determine the flow exterior to the
bubble are more like those for flow around a solid object (Tillett 1970) than a clean
bubble. At sufficiently large bubble deformation, the solution is distinguished by the
development of a surfactant-free, or clean, central part accompanied by stagnant
surfactant-caps at the ends, with different scalings for f and g on each region. A
local analysis indicates that a bubble with surfactant is rounded at its endpoints, in
contrast to the pointed ends of a clean bubble. An additional non-uniformity at the
edge of the surfactant-cap, or stick–slip problem, is not resolved.
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Perhaps the most important difference is that, in the absence of surfactant, steady
slender-bubble solutions exist for arbitrarily large capillary number, whereas in the
presence of surfactant, we find a critical capillary number above which steady
solutions no longer exist. This follows from analytical expressions which describe
steady solution branches for surfactant-covered (see equation (3.37)) and stagnant-
cap bubbles (equation (3.70)). The value of the critical capillary number, as determined
from our asymptotic theory, compares well with that determined by boundary-integral
numerical simulations of the Stokes equations and with experiment.

Equations governing the time-evolution of a slender inviscid bubble with surfactant
have also been derived. The equations are valid for large capillary number, satisfying
the scaling Q =Gµa/σ0 ∼ ε−1/3. The time-dependent equations are, to the best of
our knowledge, the first to be derived for slender bubbles with rounded endpoints.
Since the small-slope assumption underlying slender-body theory breaks down at the
endpoints, a local analysis is required to close the system of governing equations.
Numerical simulations of these slender evolving bubble equations show solutions that
exhibit tip-streaming. The simulations indicate that surfactant is swept from the main
body of the bubble and onto tip-streaming filaments that emerge from the bubble
poles or endpoints. The main body of the bubble then evolves in a manner similar to
the clean slender-bubble solutions of Hinch (1980).

Several physical effects have been neglected in the current analysis, including
interior fluid viscosity, fluid inertia and surfactant solubility. Many of these effects
can be incorporated into a slender-bubble analysis, as has been done by Acrivos & Lo
(1978) for a clean bubble, and this will be the subject of future work. We expect that
the solutions presented in this paper can play the role of a ‘base state’ from which
additional physical effects can be investigated through a perturbative approach.

The authors gratefully acknowledge support from NSF grants DMS-0420590 and
(M.S.) DMS-0104350.

Appendix
A.1. Approximation of the integral Im,n(φ)

An exact solution of the Stokes equations can be written in terms of an integral of a
distribution of point forces or Stokeslets on the boundaries of the flow region, and
outside a body that is slender, the role of the Stokeslet distribution on the boundary
can be approximated by distributions of Stokeslets and point mass sources on the
body centreline r = 0. This leads to representation of the dependent variables in terms
of integrals of the form

Im,n(φ) =

∫ b

a

kmn(ξ, r, z)φ(ξ ) dξ where kmn =
(z − ξ )m

(r2 + (z − ξ )2)n/2
,

for integer m =0, 1, · · · and n= 1, 3, · · ·, see, for example, Leal (1992). A general,
systematic method for deriving an asymptotic expansion for integrals of this type
near and on the body surface as r → 0 for an arbitrary function φ(ξ ) has been given
by Handelsman & Keller (1967), and we outline it here.

When r = 0 and m < n, the kernel kmn in the integral is singular such as (z −
ξ )m/|z − ξ |n. This suggests that for small r , there is a dominant local contribution
to the integral from a neighbourhood of ξ = z, which contains the first few terms in
the Taylor expansion of φ(ξ ) at z, provided φ(ξ ) is smooth there, whereas away from
ξ = z, the kernel is approximated by its binomial expansion for small r .
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The approximation procedure is to add and subtract to kmn the first term in its
binomial expansion for small r , namely (z − ξ )m/|z − ξ |n. This one term approximates
the kernel well, away from ξ = z, and generates the largest non-local approximation
to Im,n(φ). However, for m<n, its singular behaviour at ξ = z gives an integral that
diverges unless a sufficient number of terms in the Taylor expansion of φ(ξ ) about
ξ = z are subtracted from φ(ξ ) to make the difference tend to zero as (z − ξ )n−m. This
requires that we add and subtract p = n − m terms of its Taylor expansion to φ(ξ ).

The exact expression that results is given by

Im,n(φ) =

∫ b

a

(
p−1∑
j=0

φ(j )(z)
(ξ − z)j

j!
+

[
φ(ξ ) −

p−1∑
j=0

φ(j )(z)
(ξ − z)j

j!

])

×
(

(z − ξ )m

(r2 + (z − ξ )2)n/2
− (z − ξ )m

|z − ξ |n +
(z − ξ )m

|z − ξ |n

)
dξ (A 1)

=

p−1∑
j=0

(−1)jφ(j )(z)

j!
wm+j,n(r, z) +

∫ b

a

[
φ(ξ ) −

p−1∑
j=0

φ(j )(z)
(ξ − z)j

j!

]

× (z − ξ )m

|z − ξ |n dξ + R.

Here, the integrals

wl,n(r, z) =

∫ b

a

(z − ξ )l

(r2 + (z − ξ )2)n/2
dξ

that appear in the local contributions to the expansion are known in terms of
elementary functions of r, z, a and b. For example, the integrals I0,1(f ) and I2,3(f )
that appear in the no-slip boundary condition uz =0 and equation (3.10) require w0,1

and w2,3, which are given by

w0,1 = −2 ln r + ln(b − z + ((b − z)2 + r2)1/2) + ln(z − a + ((z − a)2 + r2)1/2),

w2,3 = w0,1 − b − z

((b − z)2 + r2)1/2
− z − a

((z − a)2 + r2)1/2
.

The remainder is given by

R =

∫ b

a

(
(z − ξ )m

(r2 + (z − ξ )2)n/2
− (z − ξ )m

|z − ξ |n

)[
φ(ξ ) −

p−1∑
j=0

φ(j )(z)
(ξ − z)j

j!

]
dξ (A 2)

and is of order O(r) times the order of φ as r → 0. The approximation scheme can
be pursued to higher order, by introducing the next term in the binomial expansion
of km,n, either at the beginning of (A 1) or in the remainder (A 2).

A.2. The singular behaviour of f +(z) as z → a+.

Although we do not address the solution of the ‘stick–slip’ problem that occurs in a
neighbourhood of the surfactant-cap boundaries at z = ±a, its solution would require
asymptotic matching with the solution constructed here. To this end, we present the
most singular part of the Stokeslet distribution f + on the right-hand surfactant-cap
as z → a+.
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Let the leading-order singular part of f +
j , which was defined at (3.41), be denoted

by f̌ +
j . We show by induction that

f̌ +
j = µjz lnj (z − a) (j = 0, 1, 2, . . .), (A 3)

where µj satisfy the recusion relation

µj = −µj−1

(
1 − 1

2j

)
(j = 1, 2, . . .), with µ0 = −1

4
. (A 4)

The calculation of § 3.2 at equations (3.57) and (3.60) has shown that µ0 = −1/4 and
µ1 = 1/8. Assume that (A 3) and (A 4) hold for 1 � j � n. Successive iterates of f̌ +

are constructed from equation (3.52), and in particular the equation for f̌ +
n+1 is

2f̌ +
n+1 + µnz lnn+1(z − a) + µn

∫ 1

a

ξ lnn(ξ − a) − z lnn(z − a)

|z − ξ | dξ = 0, (A 5)

for z ∈ (a, 1). In deriving (A 5) from (3.52) we have used the fact that Rj , for

j =1, . . . , n, is less singular than f̌ +
n . This follows from equation (3.56), or on

recognizing that each Rj is bounded and continuous at z = a. Also, we note that
the last integral in (3.52) over the left-hand surfactant-cap is not singular as z → a+.

After writing ξ = z + ξ − z for the first occurrence of ξ in the integral in (A 5), the
most singular part of the integral is seen to be given by

s(z) = z

∫ 1

a

lnn(ξ − a) − lnn(z − a)

|z − ξ | dξ

= z

(∫ z

a

lnn(ξ − a) − lnn(z − a)

z − ξ
dξ +

∫ 1

z

lnn(ξ − a) − lnn(z − a)

ξ − z
dξ

)
≡ s1(z) + s2(z).

The most singular part of s1(z) is of order O(lnn−1(z − a)), and the most singular part
of s2(z) is identical to that of the integral∫ 1

z

lnn(ξ − a) − lnn(z − a)

ξ − a
dξ,

which is readily found. The most singular part of s(z) is therefore found to satisfy

s(z) ∼ s2(z) ∼
(

1 − 1

n + 1

)
z lnn+1(z − a),

which, substituted into (A 5), shows the validity of (A 3) and (A 4) for j = n + 1.
The recursion relation (A 4) implies that

µj = (−1)j+1 1

4

(
1

2

3

4

5

6
· · · 2j − 1

2j

)
= (−1)j+1 (2j − 1)!

22j+1j!(j − 1)!
for j = 1, 2, . . . , (A 6)

with µ0 = −1/4, and (A 3) shows that the most singular part of f +, to all integer
powers of ln(1/ε), is given by

f + ∼
N∑

j=0

µj

z lnj (z − a)

lnj+1(1/ε)
. (A 7)
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The most singular part of g−, f − and g+ then follows from the relations (3.50), (3.51)
and (3.54), respectively.
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